
NASA-CR-191910
IA, ," /-3_L_

Parallel Processing for Scientific Computations
Pa_/_ep --_"

ort

Agreement Number NCC 2-644

June 15, 1991

Principal Investigator

Hasan S. AIKhatib, Ph.D.
Associate Professor of Computer Engineering

Santa Clara University
Santa Clara, CA 95053

(408)554-4485

(NASA-CR-191910) PARALLEL N93-I7028
P_OCESSING FCR SCIENTIFIC

COMPUTATIONS Progress Report

(Santa Clara Univ.} 18 p Unclas

G3/62 0141289

Abstract

The main contribution of the effort in the last two years is the introduction of the MOPPS

system. After doing extensive literature search, we introduced the system which is de-

scribed next.

MOPPS employs a new solution to the problem of managing programs which solve

scientific and engineering applications on a distributed processing environment. Autono-

mous computers cooperate efficiently in solving large scientific problems with this solution.

MOPPS has the advantage of not assuming the presence of any particular network topology

or configuration, computer architecture, or operating system. It imposes little overhead on

network and processor resources while efficiently managing programs concurrently.

The core of MOPPS is an intelligent program manager that builds a knowledge base of the

execution performance of the parallel programs it is managing under various conditions.

The manager applies this knowledge to improve the performance of future runs. The

program manager learns from experience.

Introduction

Multiprocessing software is desirable for two major reasons. The first use takes advantage

of the multitude of multiprocessing computers being introduced by manufacturers. The

second and more important attraction is to allow the large number of workstations that exist

today to run applications previously reserved for super computers only. Special hardware

is not needed to do multiprocessing. Given appropriate system software, installations that

could not solve demanding applications due to the lack of access to super computers can

use their existing workstations to do so. Doors are opened to an entire new set of computing

power by allowing supercomputer-class computations to be executed on standard worksta-

tions. Computation speed may not match those of supercomputers, but the increased ability

to solve problems that were not feasible before justifies the effort involved in using

multiprocessing.

Every multiprocessor attempts to exploit as much parallelism as possible with the lowest

possible overhead. Overhead is incurred by three basic causes: partitioning, scheduling,

and synchronization (which includes interprocessor communication, (PC)).

Constructing a workable solution requires tackling these sub-problems by 1) partitioning

the given program into smaller tasks; 2) scheduling and coordinating these tasks given the

availability of processing element, PE, and network resources; and 3) maintaining a

balancedwork loadbetweenprocessorswithout overburdeningthecommunicationnetwork

[GAJ85], [DUB88]. Many researchersareseekingsolutionsto thosesub-problems.What
is neededis aframeworkthatcombinesthoseexistingsolutionsinto ausablesystem.

Thesystemwe introducehere,calledMOPPS,is thatmissingframework.It combinesthe

existingapproachesintoa usefulsystemby addinga bondingprocedurethat makesthem
function as a coherentunit. As the componentsolutionsevolve and improve, so will
MOPPS.

In this paper,the definition of a largeprogramis any programwhosesizejustifies the
overheadincurredto packageit intomodulesandtomanageit overamultiprocessorinorder

to achievesignificantlyshortercomputationtime.

In MOPPSeachnodemonitorsits own workloadto determineif it requiresassistanceto

completeits work. If assistanceis requiredthena heuristiccalculation/decisionis made
which modelsthetradeoff betweenaprogrammodule'scomputetime requirementsversus
thelikely communicationcostsof sendingto anotherPE. If it finds it tobecheaperto pass
amoduleto anothernodefor processing,andthereisaPEwilling to help,thenthatisdone.

Thepremisesof MOPPSare: 1)Successfulhumanmanagersof multinodesystemsbegin
with basicinformationthat theyexpanduponwhile building their e_perience.Similarly,

MOPPSprogrammanagerdoesnothaveto give perfectsolutionsattheonset. It too learns

from experience;2)Theprogrammanageris concernedonly with thosejobs which arerun
frequently on the current installation. Programsthat appearinfrequently neednot be
consideredbecamethe savingsobtainedby managingthemare outweighed by program

manager overhead; 3) There is no central authority. Nodes remain autonomous and help is

offered voluntarily. 4) MOPPS tries to make the best use of the existing resources under

the existing conditions.

Partitlonlno Problem

The goal of partitioning is to minimize the length of serial code because it is the serial code

that determines computation completion times. If a computer has two operational speeds,

the slower mode will dominate performance even if the faster mode is infinitely fast

[PAT85].

A large program may be partitioned into loosely dependent modules so that several PEs can

cooperate in executing it. The modules should be as independent from each other as

possible to minimize communication between them. If the modules are not independent,

their communication demands on the interconnection channels can outweigh the advantage

of multiprocessing [BOK88].

Partitioning a programinto independentmodulesis far from trivial. The boundaries

betweenmodulesto run in parallel mustbe determined. The programmermay do this

(calledexplicit parallelism)[APP89], or the programmermay insert directivesto aid a
compiler in partitioning, or a compiler may automaticallypartition the given program

without programmerintervention(called implicit parallelism) [BAL89]. Graph theory
plays an importantrole in partitioning asmostpartitioningtechniquesuseagraphrepre-
sentationof theprogram.

Partitioningalsoinvolveschoosingmodulegranularity. Very smallprogrammodulesgive
the highestparallelismbut requiremoresynchronizationoverhead,IPC, andscheduling

work. Large modules mean less overhead and less IPC but also less parallelism. A good

solution is one that produces tasks large enough to maximize parallelism and minimize

overhead. Two or more small tasks may need to be combined into a larger one to produce

the desired size [KRU88], [MCC89].

After a large program is partitioned into modules the next step is to package the modules

with their relevant data in preparation for trips through the network. It is important at this

point to keep track of where each module is to go, where its input data is, and where to send

its output. When modules are being executed remotely a contingency plan is needed in case

something goes wrong at either the software or hardware level.

Note that coming up with an ideal partitioning of a program is nearly intractable [BOK88].

We have to consider not only data dependencies but also synchronization issues and the

amount of intercommunication any two modules of the program will require while running.

Both synchronization and interprocess communication generate traffic on the network

which has to be kept minimal for shipping modules to other nodes to be attractive. The goal

is to improve performance of the overall distributed system. Optimizing the utilization of

the PEs at the expense of increased communication cost is not likely to be an optimal

solution.

$¢hedullna Problem

Scheduling, or task allocation, is an important step that if not done properly can actually

decrease the total throughput with an increase in the number of processors working on the

same problem. The goals of scheduling are: load balancing on the different PEs, fastest

execution time of a given program, and smallest overhead in network and PE usage.

Several approaches are taken by researchers at work on this problem. They range from

centralized control where global knowledge of the system is maintained in one place

[PAS86], [PAS87], to distributed control where all nodes have equal knowledge of the

system. Methodsusedvary from Baysian decision theory [STA85] to data flow graphs

[CHU87-2].

An effective scheduler minimizes the overall execution time of a large program by running

its partitions on a network of relatively small computers (PEs) instead of using a single large

computer. The scheduler has to achieve its goal without excessive demands on the

communication channels. For example, two program modules that interact heavily while

executing should be run on the same PE so as not to flood the network with messages

between them.

The scheduler also ensures that volunteer nodes do not waste their time waiting for it to

decide which one to ask for help. In case no other nodes are available for help, the scheduler

must keep subprograms executing on their local PE.

The scheduler picks the best volunteer out of several candidates and ensures that the results

needed by a module are ready as close to the time they are needed as possible.

Maintalnino a System Wide Balance

Communication and synchronization are overhead incurred with parallel processing. The

challenge is to increase the degree of parallelism without increasing the arithmetic and

communication complexity of some other aspect of the problem.

In any effective solution it is important to keep the load reasonably balanced over all nodes

by fair module assignments. It is also important to keep communication channel use to

acceptable levels, particularly since the channels are likely used for other functions.

There are two types of synchronization. The first type, also known as data synchronization,

is the access to shared variables where two processes are not allowed to alter the shared

variable at the same lime. This is usually done through critical regions. The second type is

conditional or control synchronization. It occurs when processes need to wait until a set of

variables is in a specific state before proceeding [DIN89], [DUB88].

Synchronization produces IPC, which also increases the load on the network, impacts

scheduling, and imposes restrictions on where a task can be sent. IPC refers to the exchange

of data between different processes. It is most often the result of explicit directives in the

program. Synchronization is a special form of communication inwhich the data are control

information [DUB88]. Tasks that need to synchronize a great amount might be better

allocated to execute on the same PE.

The Proposed Solution

Several approaches are available for partitioning, scheduling, and synchronization. How-

ever, knowledge gained by employing those approaches is confined to a particular system.

A unification scheme that allows the experience gained by using a specific set of solutions

on a specific machine to be shared by different systems having different architectures,

hardware, and software would be very useful [BRO89], [GAU89].

MOPPS captures that experience into a knowledge base and uses it to improve the overall

execution time of an important. MOPPS is not locked into a specific architecture, program-

ruing language, or operating system. It looks at a program as a collection of functions that

perform specific scientific programming tasks; e.g. matrix inversion or multiplication. It

stores, in its knowledge base, the execution times of the specific functions on a given

machine under varying conditions of PE and network load. It then provides that information

to the project manager which uses it to plan the execution path of the job at hand.

MOPPS is most useful for scientific applications where there is a known pool of functions

run repeatedly on all the machines. For example, matrix inversion, matrix multiplication,

and solutions of simultaneous linear equations are all operations done frequently in a

scientific environment. If each node has a scientific applications library that provides those

functions, and if we know how long it takes to run those functions for a given size of data,

then we can make good estimates for run times of the problem at hand. Couple that with

knowledge about the PE loads and network usage at the time of execution, and we have

enough data to plan intelligently. If we give those good estimates to an intelligent project

manager, it can plan the execution of the job at hand with minimum overhead on network

and PE.

The target environment for MOPPS is a distributed network of heterogeneous computers.

The computers do not have to be identical and may vary in speed and special capabilities.

The project is the focal point of MOPPS. A project is the executable program with all its

partitions, data flow graphs, scheduling restrictions, intelligent knowledge base, and what-

ever else is needed to successfully execute the program.

MOPPS looks at software programs as projects, no different from any other project such as

constructing a building. MOPPS is built upon the following ideas:

A) The top level control of MOPPS is an intelligent program manager that attempts to

perform the project as expeditiously and efficiently as possible.

5

B) The control entity within any node learns from experience and does not have to be

absolutely correct the first time around. The system is allowed to make mistakes during

a learning period after which it is expected to be "mostly correct."

C) Nodes in a distributed system are independent of each other, there is no need for global

knowledge or centralized control of the system. Nodes are considered by other nodes

as resources that might be available for help.

The system is designed to mimic what humans do. Humans are seldom precise in how they

apply knowledge. One begins with a set of rules, which one uses as guidelines, and then

exercises these guides to hone one's skills. With proper supervision and feedback, a human

manager can become adequately effective. Of course, the initial set of rules must have been

appropriate.

Future state of the art advancements for any of the system's components will enhance

system operatiorL This modular design is both flexible and capable of remaining current.

The manager will not be optimal at first. It will learn better over time. A feedback unit,

called the Intelligent Data base (IDb), is queried by the manager as to how long each section

of the code is expected to take to execute either locally or remotely including communica-

tion overhead. The IDb monitors what actually happens at execution time. If the difference

is within a preset tolerance level, no action is taken. If the estimate was off by more than

the tolerance level, then the IDb adjusts its estimates to be closer to the actual (i.e.

experienced) run times. With time, the system will tend to converge to near optimal

assignments for the most frequently invoked program modules it encounters.

TeD Level System ComDosltlon

The major components of MOPPS am shown in Figure 1:

A. A partitioning entity that takes operational directives and produces partitions of a

program. It could be implemented as a part of the compiler, or the progranuner can

create his own partitions, or some combination of both.

B. An Intelligent Data base, the feedback unit, that can be easily updated and quickly

queried.

C. A network load estimator that provides IDb with information regarding the current

channel traffic level, q'his information allows the manager to make better decisions on

how long it will take for a partition to travel in the network and to execute. If the

network is vely busy, shipping costs might be too expensive for some of the smaller

partitions and computing them locally or combining them is a better decision.

D. A manager that supervises the run time activities. The manager queries IDb, or calculates

on its own if no information is available from IDb, how long each partition is likely to

6

Figure 1

___Local copy in eoch P[I

take to execute. The manager also checks the state of the communication channel

through the network load estimator. It then utilizes a bidding process, similar to that in

[PAS86], to ask for help from remote nodes. The bidding process is a protocol in which

all nodes participate. It provides the nodes with a standard format for quantifying their

need for help and their availability to help others, with minimum impact on communi-
cation bandwidth.

Functional Description

The oartltlonlno entity_

There are data parallel and control txu'allel algorithms. Data parallel algorithms are those

that partition the data but apply the same algorithm to the different parts. Control parallel

algorithms are those that partition the code itself and may or may not partition the data.

Many researchers are working on this problem [APP89], [BAL89], [BOK88], [CHU80],

[CHU87-1], [CHU87-2]. Most solutions use a graph representation of the program at hand

where nodes represent functions that execute independently and arcs between them repre-

sent precedence relations and/or inter process communication.

Although partitioning is a significant problem, MOPPS is flexible enough not to care who

does it or how. This is not to suggest we are ignoring it here. We decided to create our own

partitioned application instead of using other researchers' results. The application was

chosen to be both of practical and theoretical importance. It also had to be non-trivial. It is

described in [ARA89] and has produced a significant contribution employing Epsilon

Decomposition (ED) [SF186] to solve large sets of simultaneous linear equations. ED is

applicable to any linear system having a large array that can be partitioned. We believe that

such systems account for the largest portion of scientific problems.

It is possible to expand the partitioning unit by using mn time data provided by the IDb.

Partitions that are too small to justify shipping individually can be grouped together

(maintaining logical and data dependencies) for trammission to another node for process-

ing. Such partitions then become candidates for economical shipping [MCC89], [KRU88].

The goal of partitioning in MOPPS is to produce well defined pieces of code that execute

well defined scientific applications. The advantages are as follows: 1) It is possible to build

a library of such functions that are available on all nodes. 2) It is easy to compute how long

it takes to run such a function on a certain size of data. MOPPS learns these execution times

and applies that knowledge to future runs in order to improve the total execution time of a

program. 3) IPC is minimized since each function needs only its input data at the beginning

of execution and is only heard from at the end of execution when it produces the output data.

Those restrictions are not unusual because they follow the nature of scientific applications

where a function has one line of input, does one task, and produces one line of output. 4)

It is possible to implement partitioning in either the compiler or the program. By making

the compiler aware of the library functions that can mn independently, the compiler can

automatically package these functions for independent execution pending the availability

of their input data. Alternatively, to avoid modifying the compiler, the programmer can

wrap the calls to the prepackaged library routines by directives to the PM to allow for

parallel execution of those functions.

Data partitioning can use a similar approach. Data partitioning is either simple as in

breaking the data into n equal parts, or complicated, as in ED [ARA89], where the break

down criteria is not as straight forward. In the simple case, partitioning can either be done

by the programmer, when the compiler is not MOPPS-aware, in which case the partitioned

data is passed to multiple calls of the library function. Or, in the case where the compiler

is MOPPS-aware, it can determine, or be told, how many partitions of data are needed.

Knowing the type of function, the compiler determines how to partition data and into how

big a piece, given existing memory sizes and whatever other limitations are relevant.

Alternatively, the compiler can be told how to do it.

If MOPPS is implemented as an application, as opp_ed to a part of the operating system,

then some changes have to be made. Partitioning becomes a part of the program itself which

has to make the correct calls to the correct library functions. If the compiler is MOPPS-

aware, then it can be taught where to find the functions called for by a program.

Irtteilloent Database flDb)

IDb is the entity which captures system experience. It builds and provides run time

estimates for each module worthy of monitoring.

There are solutions that make use of knowledge bases to store experience with a given

system [_9]. Most of them, however, memorize static solutions to the problem. For

example, [YAN89] solves a problem on the same set of processors and improves the

solution quickly. MOPPS does not assume that any given set of processors is available. It

learns categories of solutions rather than specific ones. If the problem is, for example,

matrix multiplication, then IDb learns how long it takes to execute the available matrix

multiplication function given the size of matrices involved, the type and speed of PF_, the

load on the PE and, the load on the network at the time of execution.

The IDb is designed to categorize different types of modules and parameterize their

computational and communication time requirements. Atype, as defined here, describes the

higher level operation that the module implements. For instance, if the module implements

a matrix inversion routine, then its type could be matrix-inversion, and its operational

characteristics might include matrix size, element type (eg, integer, real, complex), and

number of multiplications.

IDb contents are tailored to the installation where it resides. The database is initiated with

the types of applications being run, and its contents are updated as new applications are

introduced. For instance, if lmralld numerical algorithms were the primary focus for the

system, then data such as timing requirements, operational characteristics, and precedence

requirements specific to such operations would be embedded within the database [CHU87-2

and SAM77]. A similar idea, although in a slightly different context, has been proposed by

Pasquale [PAS86 and PAS87].

Upon each task completion, the IDb is updated to reflect the most current experience. When

no data is available about an application, we can run it the first time with gross overesti-

mates, or underestimates, and let 11319learn about it. Simulation may also be used to obtain

initial estimates.

It is essential that IDb be queried and updated quickly as it would be a system bottleneck

and might slow down the entire system if not properly designed. Ultimately IDb can be

implemented in hardware as a content addressable memory, or even as a neural network

which could save interpolation time if the exact data is not available.

N_work Load Estimator (NLE_

Since we assume that MOPPS runs on systems connected with a common network, it is

important not to overload the network with messages from MOPPS. Another consideration

is that if the network is busy, transmission times will be altered greatly and as a consequence

total execution times will also be impacted. Therefore, we introduced the NLE to MOPPS

to give the program manager an up-to-date reading of the network traffic. Smaller partitions

that take a relatively short time to execute can become too expensive to ship if Wansmission

times become too severe. In that case, it might be better to keep them on the local node,

defer shipping them, or combine two or more into larger partitions.

It is the responsibility of this unit to provide the Program Manager with real time channel

traffic information. The NLE can be as simple as a bus monitor which continually updates

a register (interpreted as an integer) signifying channel utilization levels of high, medium,

or low.

Prooram Mana oer (PM)

Figure 2

40 Min 15 }din

10 Idin

6_20 Min

r

Central to the entire concept proposed is the Program Manager. It is the PM that is

responsible for the overall execution and control of a program's modules. The PM can be

likened to a project management software like those used in construction. It takes as input

the number of tasks and their dependence graph, provided by the partitioning entity, and

their estimated execution time, provided by the IDb. What it lacks is the list of resources,

PEs and commtmication channel, and their availability. NLE provides information about

10

the channel, and the bidding process, which is introduced later, provides information about

the PEs.

The PM takes all that information and schedules tasks for execution so that a task does not

start much before or after its input is available. This minimizes the buffering of intermediate

dam and the wait a PE suffers when it tries to run a task whose input is not yet available.

Intelligent scheduling is done by using the dependency graph of the program and the

estimated (best case) execution times of tasks. By going backwards in the graph, PM

decides when each module should start execution.

Figure 2 shows an example of a program graph with six tasks and their estimated execution

times. The last task, T6, requires 20 minutes to execute and depends on the results of tasks

T1, T2, T4, and T5. T5 depends on T4 and T4 depends on T3. Given those times, PM

schedules T1 to start at time to, T2 and T3 at time to+15. When T3 is finished at 10+30, T4

starts. By the time T4 is finished at t0+40, so should T2 and T1. At this point'1'5 begins, and

when it is finished T6 is executed. From this example, it is clear that, for example, T3 should

start no later than t0+15. This means that PM has 15 minutes to ask for bids for T3 and ship

it. This is how PM decides when to start asking for help with a given task and when it has

to decide computing it locally.

The PM is responsible for assigning modules, one by one from its local queue, to the

selected processing elements including its own local PE. This local PE may be assigned a

new computationally intensive software module while it is already doing a large amount of

work. In this case, it is the responsibility of the PM to determine whether it is more efficient

to ship the module to another PE or to keep it in the queue of the local PE. The PM is

essentially another process that manages sub processes.

The program manager does not assume that nodes which helped it in the past will help it in

the future. Therefore, it does not memorize a fixed solution for a problem (configuration)

that would be repeated each time. Instead, through IDb it learns how long it takes to execute

each module given system-wide conditions that include network waffic and PE loads

(relevant PEs). Every time the PM encounters that module, it repeats the process of asking

for help. During subsequent runs, it is armed with better estimates of how the rest of the

network will behave under the existing set of conditions. In this manner, the most

appropriate PE available for help is used rather than relying on the same PEs evely time.

Definition of PE load

In MOPPS the PiE load is defined to mean not just the number of processes but also their

estimated length of execution. Merely counting the number of processes in the PE queue

11

and taking that as an estimate of the load on that PE is insufficient. Jobs vary in their

execution time. For example, one PE might have a single job that takes hours to do, while

another could have several jobs that take a minute to finish. A better way of measuring the

load on a single PE is to sum the estimates of how long each job takes. Through comparing

these load estimates a reasonably fair balance, not necessarily the fairest, will be maintained.

If MOPPS is not implemented as a part of the operating system, then PE load reflects only

those jobs that the PM is working on.

Good channel usage relies on an intelligent bidding algorithm. This process is described in

the following section.

The Blddln_a Process

An important consideration in the design of any system that manages parallel processing

applications is the capability to communicate its need for help to other nodes. It has to do

so without sending too many messages over the network. The message sent has to include

enough information to allow remote nodes to decide whether they can help or not. The

bidding algorithm described here is an efficient way for achieving this goal. It sends the

minimum number of messages, wastes very little time of the nodes offering to help, and

does not require a central information keeper to know who is doing what. For the bidding

algorithm to work effectively we must have an efficient measure of the load on nodes. We

defined a new yardstick for measuring PE loads in the previous section.

The local PM weighs execution time versus shipping and management time for each

resident module. If execution time is greater than shipping and management time and the

load on the local PE is higher than a predefined threshold, the PM broadcasts a global

message through the interconnection network asking for help. This "help wanted" message

includes enough information about the module to be sent enabling other nodes to determine

if they can offer their help. The information includes the estimated module execution time,

memory and disk requirements, and any other information that is useful in making the

decision.

Those PEs which can potentially bid to accept the module for processing will examine this

information and determine whether it is feasible to bid. If a node is capable of assisting it

will return a message stating its availability, and will commit to this bid for a period long

enough for the asking node to receive the return message and act on it. Through this

process, nodes that bid for help and are not accepted will waste little time before considering

later "help wanted" messages.

12

Each node will monitor the network before sending its reply to determine if any other

node(s) have responded to the bid and will not send its reply if any node did respond. It is

assumed that the first node to reply will get the job, and there is no need for others to do so.

The PM sends the module to the first node that replies to the request.

There are a number of possible variations on this scheme; simulation will show which are

more effective and economical.

It is important that the system be able to estimate the load on the PEs. Each node has a preset

limit of load that its PE is allowed to be committed to at any one time. A possible

implementation would be to use a load gauge. The gauge is incremented every time a large

job joins the PE queue by the estimated execution time of that job. When the job is finished,

the execution time is subtracted from the gauge. The maximum load of a PE occurs when a

PE is committed for the next, say, five minutes. Thus, only those nodes currently below

their maximum load will respond to requests. Notice there is no central control in this

scheme, instead, distributed cooperation is enforced.
I

Two rules make it unnecessary for the PM to decide which PE to ask for help. First, each

PE observes the preset busy limit and does not take any bids if it is busy longer than the

limit. Second, when a PE accepts a bid, it accepts it regardless of its length. This way, tasks

that take longer than the preset limit are not blocked out. Given those two rules, when a PM

asks for help and a PE accepts it, the PM knows that the maximum time the task will take

is the sum of its execution time and the preset busy limit plus a factor of uncertainty (to

account for things like interactive use of the remote PE).

The PM repeats the help wanted message for a given task until either it receives a response

or the task is at the point where it has to be executed in order not to delay the rest of the

tasks.

Future Direction

Most significant scientific applications require the use of very large address space. More-

over, there is some sharing of memory in those applications. Therefore, the next step of our

work will focus on extending the virtual address space of a task from a single node to several

nodes. The address space will be a concatenation of all address spaces of all the nodes on

the network. This address space may contain holes of non-existing address ranges due

mainly to nodes being down or being un-involved in the task being run. Each node knows

which parts of the address space are local and which are remote. Of the remote parts, it is

known where each contiguous region resides, i.e. which node's physical memory it repre-

sents. When a task with a large address space requirement is run, each thread in it runs on

13

a different node's physical memory. When a thread accesses a variable that is not local, a

remote-access fault is generated and the operating system takes over and fetches that

variable from the node it resides on. The operating system knows where to look for that

variable because it has a map of physical address regions to nodes.

Most of the design of MOPPS will remain the same. Bidding will still be implemented, so

that nodes that are busy will not be ovemm by extra work. The scheduler will also remain

about what it is right now.

A new set of problems will have to be addressed. The most important of which are task

migration and sharing memory across a slow network.

Memory sharing requires first recognizing that a particular variable is not local and then

fetching it across the network efficiently. A variable's location is known by its address. As

described earlier, different address regions reside on different nodes. Fetching a variable

across the network requires the cooperation of both operating systems. First, we need a way

to identify the particular application to the remote system because the remote system may

be running other applications that may have the same address space. Then we can ask for

a particular address within that application's address space.

The simplest case is when the variable is in active memory and its application is running.

In this case we merely need to send its value back. A second case is when the variable is

swapped to disk while its application is still nmning. This case generates a paging fault to

get the page from swapping storage. Address resolution is easier here because all the tables

are loaded with the desired applications base addresses. The third case is when the

application itself maybe swapped to disk altogether. Here we need to reload the information

necessary to locate a particular address in the address space.

Task migration can be classified in three main categories. The first is where both data and

program reside on the remote node and all we have to do is activate the program to operate

on the data. This is equivalent to pure RPC. This is the simplest case where there is no

shared data and all we need to worry about is how to send the output to the right place.

The other extreme is where we need to migrate an entire thread and its data. This is a

difficult problem especially if we decide to migrate a thread after it started execution. The

main problem here is maintaining the execution environment of the thread. A thread runs

under the umbrella of a task. The task contains everything a thread needs to execute such

as system resources, shared variables, and others. In its simplest scenarios, this case can

turn into the third category discussed later where we merely ship the code and then share

the data.

14

There is a large body of research in the area of stand-alone thread migration. Threads in

this body of research am self contained entities similar to our tasks and unlike our threads

which may sham data. We expect to apply some of the conclusions reached in that area to

our problem. [ART89], [ZAY87], and [SMI??].

The last category of task migration is a middle ground of the previous two. It can be thought

of as Rt_ with shared memory. In this case, the program resides on the remote node, maybe

in the form of a canned library of scientific routines. Data is then shared between remote

nodes.

The performance of the final system will depend heavily on the efficiency of task migration

and memory sharing. Every time a program accesses shared data, a significant performance

loss is expected. We expect to substantially reduce this performance loss by three main

ways. One, by having smart algorithms for partitioning, scheduling and memory sharing.

Two, by creating local caches of some of the shared data that reside on remote nodes. Three,

by using faster networks such as FDDI and TurboLan.

Factor one, above, is under our control and will be a part of our solution. Factors two and

three are outside the scope of this work. However, they are heavily researched by others

and once resolved they will enhance the performance of multi-node computing in the future

including our own.

Conclusion

In the past two years, we have developed a flexible system for the management of parallel

scientific programs running on a distributed computer network. It learns and adapts to

improve its system management decisions as it monitors the execution of applications.

The system will be expanded so that it looks at the entire network of workstations as a single

address space. New issues to deal with are process migration and memory sharing across a

slow network.

References
AP_9 Appelbe, B., Smith, IC and McDowell, C. "Star/Pat: A parallel programming _oolkiL"
Software, July 1989.

IEEE

ARAB9 Arafeh, Hassan and AIKhatib, Hasan, "Using the Epsilon Decomposition Method to Solve Sets of

Simultaneous Linear Equations," Technical Report 143, EECS Department, Santa Clara University, 1989.

AR_9 Artsy, Yeshayahu and Finkel, Raphael. "Designing a Process Migration Facility The Charlotte
Experience." _ Computer, September 1989. pp47-56.

SMI?? Smith, Jonathan M. "A Survey of Process Migration Mechanisms."

BAL89 Baldwin, D. "Consul: A parallel constraint language." _ Software, July 1989.

15

BOK88 Boklmri, Shahid H., "Partitioning Problems in Parallel, Pipelined and Distributed Computing," IFFF.
Transactions on Computers, Vol 37 #1, January 1988 pp. 48-57.

BRO89 Browne, J. C., Azam, M. and Sobek, S. "CODE: A unified approach to parallel programming." IEEE
Software, July 1989.

CHUB0 Chu, Wesley W. et. aL, "Task Allocation in Distributed Data Processing," IFFr: Computer, Novem-

ber 1980, pp57-69.

CHU87-1 Chu, Wesley W. and Leung, Kin K., "Module Replication and Assignment for Real-Tune
Distributed Processing Systems," Proceedings of the IEEE, Vol. 75, No. 5, May 1987, pp.547-562.

Ct-IL_7-2 Chu, Wesley W. and Lan, Lance M-T, "Task Allocation and Precedence Relations for Distributed
Real-Time Systems," IEEE Tramactiom on Computers, Vol. C-36, No. 6, June 1987, pp. 667-679.

DIEB4 Dietel, Harvey M., "An Introduction to Operating Systems," Addison-Wesley Publishing Company,
1984.

DIN89 Dinning, Anne, "A Survey of Synchronization Methods for Parallel Computers," _ Computer,
July 1989, pp. 66-77.

DUB_ Dubois, M., Schemich, C., and Briggs, E A. "Synchronization, Coherence, and event ordering in
multiprocessors." IEEE Computer, February 1988.

GAJ85 Gajski, Daniel D., and Peir, Jih-Kwon, "Essential Issues in Multiprocessor Systems," IEEE Computer,
June 1985, pp %27.

GAU89 C,uarna, Vincent A. Jr;, Gannon, Dennis; Jablonowsid, David; Malony, Allen D.; and Yogesh Gaur,
"Faust: An Integrated Environment for Parallel Programming," IEISE Software, July 1989, pp. 20-29.

_U88 Kruatrachue, B. and Lewis, T. "Grain size determination for parallel processing." IEEE Software,
January 1988.

MCC89 McCreary, C., and Gill, H "Automatic determination of grain size for efficient parallel processing."

Communications of the ACM, September 1989, Volume 32 Number 9.

PAS_ Pasquale, Joseph, "Knowledge-Based Distributed Systems Management," Report No. UCB/CSD

86/295, UC Berkeley, Computer Science Division, June 1986.

PASS7 Pasquale, Joseph, "using Expert Systems to Manage Distributed Computer Systems," Report No.

UCB/CSD 87/334, UC Berkeley, Computer Science Division, January 1987.

PAT85 Patton, E "Muitiprocessors: Architecture and Applications." IEEE Computer, June 1985.

SAM77 Sameh, Ahmed _, "Numerical Parallel Algorithms -- A Survey," in High Speed Computer and
Algorithm Organization, Academic Press, 1977, pp. 207-228.

SEZB6 Sezer, M. E and Siljak, D.D., "Nested ElaSilon-Decompositions and Clustering of CompI_ Systems,"
Automatica, Vol 22, No. 3, plx 321-331, 1986.

STAB5 Stankovic., J. A. "An Application of Bayesian Decision Theory to Decentralized Control of Job
Scheduling." lE-'FF_Tramactions on computers, Vol. c-34, NO. 2, February 1985.

TER89 Terrano, A. E, Dunn, S. M., and Peters, J. F_. "Using an architectural knowledge base to generate

code for parallel computers." Communications of the ACM, September 1989 Volume 32 Number 9.

YAN89 Yah, J. C., and Lundstrom, S. E "The Post-Game Analysis Framework-- Developing Resource
Management Strategies for Concurrent Systems." Submitted to: Transactions on Data and Knowledge
Engineering, 1989.

16

ZAY87 Zayas, Edward R. "Attacking the Process Migration Bottleneck." ACM 1987.

ZOO9 Zorn, B., Flo, K., l.arus, J., Semenzzato, L, and Hilfinger, P. "Multiprocessing extensions in Spur
Lisp." IEEESoftware, July 1989.

17

